Wednesday, January 6, 2010

Clockless Chips


                           When people ask this question, they are typically referring to the frequency of a minuscule clock inside the computer, a crystal oscillator that sets the basic rhythm used throughout the machine. In a computer with a speed of one gigahertz, for example, the crystal "ticks" a billion times a second. Every action of the computer takes place in tiny steps, each a billionth of a second long. A simple transfer of data may take only one step; complex calculations may take many steps. All operations, however, must begin and end according to the clock's timing signals.

The use of a central clock also creates problems. As speeds have increased, distributing the timing signals has become more and more difficult. Present-day transistors can process data so quickly that they can accomplish several steps in the time that it takes a wire to carry a signal from one side of the chip to the other. Keeping the rhythm identical in all parts of a large chip requires careful design and a great deal of electrical power. Wouldn't it be nice to have an alternative?

Clockless approach, which uses a technique known as asynchronous logic, differs from conventional computer circuit design in that the switching on and off of digital circuits is controlled individually by specific pieces of data rather than by a tyrannical clock that forces all of the millions of the circuits on a chip to march in unison. It overcomes all the disadvantages of a clocked circuit such as slow speed, high power consumption, high electromagnetic noise etc.
For these reasons the clockless technology is considered as the technology which is going to drive majority of electronic chips in the coming years.

   Download :     Full Report (.doc)




Digg Google Bookmarks reddit Mixx StumbleUpon Technorati Yahoo! Buzz DesignFloat Delicious BlinkList Furl

0 comments: on "Clockless Chips"

Post a Comment

Related Posts with Thumbnails