Satellite crosslinks generally require narrower bandwidths for increased power concentration. We can increase the power concentration by increasing the cross link frequency with the same size antenna. But the source technology and the modulation hardware required at these higher frequency bands are still in the development stage. Use of optical frequencies will help to overcome this problem with the availability of feasible light sources and the existence of efficient optical modulation communications links with optical beams are presently being given serious considerations in intersatellite links. And establishing an optical cross link requires first the initial acquisition and cracking of the veacon by the transmitting satellite followed by a pointing of the LASER beam after which data can be modulated and transmitted.
Monday, January 11, 2010
Home Networking Optical Satellite Communication
Optical Satellite Communication
Post under
Communication,
Computer Science,
Electronics,
Networking
at
Monday, January 11, 2010
Posted by
Unknown
Satellite crosslinks generally require narrower bandwidths for increased power concentration. We can increase the power concentration by increasing the cross link frequency with the same size antenna. But the source technology and the modulation hardware required at these higher frequency bands are still in the development stage. Use of optical frequencies will help to overcome this problem with the availability of feasible light sources and the existence of efficient optical modulation communications links with optical beams are presently being given serious considerations in intersatellite links. And establishing an optical cross link requires first the initial acquisition and cracking of the veacon by the transmitting satellite followed by a pointing of the LASER beam after which data can be modulated and transmitted.
Subscribe to:
Post Comments (Atom)
0 comments: on "Optical Satellite Communication"
Post a Comment